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ABSTRACT 

In this paper, we propose a naive Bayes classification method 

for pixel-level plant segmentation, which can classify plant 

and background (plant/non-plant) with high accuracy in an 

image. Unlike existing algorithms, in which statistical in­

formation is extracted from a single image and optimiza­

tion techniques are applied to minimize the segmentation 

cost function, in the proposed method, statistical informa­

tion/features are extracted from a training image dataset (each 

image includes plant and non-plant background) and a naive 

Bayes classification method is applied to identify each pixel 

class in an image. Therefore, the proposed method is less 

complex than other learning techniques as no (regularized) 

optimization method need to be applied in the segmentation 

algorithm. The proposed method is more useful when a lim­

ited number of classes/objects needs to be classified, such 

as the two-class plant/non-plant problem. An image dataset 

with sufficient images to extract feature information in the 

training step is also needed. The proposed method is a subop­

timal classification but can approach the optimum one if the 

pixels probability distribution functions (PDFs) are approxi­

mated accurately and a posteriori probability of each pixel is 

available. 

Index Terms- Naive Bayes, segmentation, classification 

1. INTRODUCTION 

Recently, pixel-level image segmentation methods have been 

widely used in computer vision (CV) and image processing 

for various applications such as augmented reality (AR), self­

driving vehicles, computed tomography brain imaging, etc. 

The basic idea of image segmentation is to identify the class 

of a pixel and/or a region in an image. Pixel-level segmen­

tation can also be employed for plant biology purposes. The 

first step to analyze plant images is to identify the plant pixels 

(plant area) and remove the background in an image. There­

fore, plant segmentation enables plant biologists to analyze 

images and extract physical characteristics of plants (pheno­

types). 
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Many supervised and unsupervised techniques from dif­

ferent perspectives have been proposed to address the image 

segmentation task [1-5] . A compressive sensing (CS) method 

is applied in the naive Bayes approach in [1] to track moving 

cells in time-lapse image sequences. However, the extracted 

features from object/background are modeled by Gaussian 

distributions, which is not necessarily a correct assumption 

for most applications. An impressive factorization-based tex­

ture segmentation method is proposed in [2], which utilizes 

the local spectral histogram as extracted features and applies 

a matrix factorization to discriminate the region of the objects 

in an image. A similar approach is also proposed in [3] where 

a two-step factorization-based active contour method for tex­

ture segmentation is explained. A semi-supervised segmen­

tation method is proposed in [5], which is somewhat similar 

to the method proposed in [2], however, it does not require 

a set of images or a histogram of object and background. 

Although the aforementioned methods are unsupervised, and 

hence they do not require ground-truth information about dif­

ferent classes, their optimization cost functions are computa­

tionally complex and also sensitive to the regularized param­

eter. 

In this paper, we propose a na'ive Bayes algorithm for 

pixel-level plant segmentation to determine whether a pixel 

belongs to the plant area or the background (plant/non-plant 

classification). The proposed method is less computation ally 

complex than existing algorithms and has several appealing 

features for plant image analysis: 1) it eliminates the need for 

manual parameterization of thresholding and color selection; 

2) it s relative ease of use enables plant biologist to build train­

ing sets for their experimental conditions; and 3) it is compu­

tationally expedient. The specific contributions/approaches of 

this paper are as follow: in the training phase, we extract and 

model statistical information from the plant/non-plant areas 

from a reasonable number of images in the training dataset, 

and in the test phase, we apply a naive Bayes classification 

method for each pixel to identify its class. The proposed 

method is a suboptimal approach for the following reasons: 

1) we assume the probability distribution functions (PDFs) 

of the features that are extracted from the images are inde­

pendent, and hence we are able to apply the naive Bayes ap­

proach for segmentation. However, the extracted features are 



not necessarily independent. 2) we assume that the PDFs of 

the extracted features are known. In many cases, PDFs are 

not known and we approximate/model them based on limited 

samples and hence, we have an approximation error in PDF 

modeling. 3) we assume the probabilities that a pixel is plant 

or non-plant area are equal, which is not a true assumption in 

some applications. We discuss the proposed method in more 

details in following sections. 

2. NAiVE BAYES PIXEL-LEVEL SEGMENTATION 

An example of images that are analyzed at the Donald Dan­

forth Plant Science Center (DDPSC) are depicted in Fig. 1. 

(a). The images acquired using a LemnaTec Scanalyzer 3D 
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Fig. I: (a) RGB presentation of the image. (b) HSV 
presentation of the image. (c) The mask of the plant. (d) The 

desired part of the image (plant). 

robotic system and are high resolution at 2454 pixels x 2056 
pixels. The system accommodates 1140 plants and takes mul­

tiple images of each plant each day for 2-6 weeks [6]. As seen 

in Fig. 1. (a), plant/non-plant pixels have different colors. 

This difference can be enhanced using HSV color space, Fig. 

1. (b). We model/approximate the PDFs of plant and non­

plant pixels in HSV color space in an image using the kernel 

density estimation (KDE) method, which enables us to apply 

the na'ive Bayes method for plant segmentation. In the train­

ing phase, in order to estimate the PDFs of the plant/non-plant 

areas, we use the PlantCV open-source software package [6] 

to analyze the training images and segment plants using a 

semi-automated approach as a ground-truth for the training 

phase. By employing PlantCV we are able to find the contour 

of the plant, as depicted in Fig. 1. (c), and hence, determine 
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Fig. 2: PDFs of H, S, and V. 

pixels in an image that belong to plant/non-plant areas as de­

picted in Fig. 1. (d) for the training phase. This process en­

ables us to calculate the PDFs of plant/non-plant pixels which 

are employed in the na'ive Bayes plant segmentation. It is 

worth noting that we apply PlantCV to find the mask/contour 

only in the training phase, and the aim of the proposed scheme 

is to replicate the same performance or better as PlantCV with 

the na'ive Bayes method without the need for user-specified 

thresholds and other settings. In other words, PlantCV pro­

vides the ground-truth information for training phase. The 

PDFs of the plant/non-plant pixels belong to the channels H, 
S and V are depicted in Fig. 2 (a), Fig. 2 (b) and Fig. 2 (c), 

respectively. As it is clearly seen, H, S, and V have differ­

ent PDFs for plant/non-plant classes. It can also be seen that 

PDFs for channel S for plant/non-plant area have less over­

lap and hence, has a better resolution in the classification than 

PDFs of channels H or V. The maximum likelihood (ML) 

ratio test can be applied to classify plant/non-plant pixels. We 

define two hypotheses as follows: 1) Ho a pixel belongs to 

the plant area in an image and 2) HI a pixel belongs to the 

background in an image. We extract some features from the 

images I and model their PDFs under Ho and HI hypothesis. 

By having a reasonable number of images, based on the law 

of large number (LLN) theorem, we can model the PDFs of 

the plant/non-plant pixels with high accuracy. 

The na'ive Bayes approach can be applied as a simplifying 

technique to reduce the computational complexity of calculat­

ing joint PDFs. In this case, we assume the PDFs of features 

extracted from channels H, S, and V for Ho and HI are in-
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dependent. Therefore, we have 

p(fi (HSV) IHo) = p(fi(H)IHo)P(Ji(S)IHo)P(Ji(V)IHo), 
(1) 

P(Ji (HSV) IHI) = p(Ji(H)IHI)p(Ji(S)IHI)p(Ji(V)IHI), 
(2) 

where fi(HSV) is the i-th feature extracted from H, S, 
and V channel spaces of an image and P(Ji (HSV) IHo) 
and P(Ji (HSV) IHI) are joint PDFs for the i-th feature for 

Ho and HI, respectively. We extract two features from an 

image as h (H) = H, i.e., h (.) is an identical function, 

and 12 (H) = H2. These transformation functions are also 

valid/applied for S, and V channel spaces. The PDFs of H2, 
S2, and V2 are depicted in Fig. 3 (a), Fig. 3 (b), and Fig. 3 

(c), respectively. 
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In order to identify the class of a pixel, a log likelihood 

ratio (LLR) test is applied. We assume that extracted features 

for arbitraries i and j are independent. Therefore, we have 

p (fi (HSV) , fj (HSV) ) = p (fi (HSV) ) P (fj (HSV) ). 

(3) 

In this case, the LLR test for two hypotheses Ho and HI are 

given by 

I = log (OiP (Ji (HSV)IHo) ) 
OiP (Ji (HSV) I HI) 

. (4) 

As mentioned, we assume the probabilities that a pixel is plant 

or non-plant are equal, i.e. p(Ho) = p(HI) = 0.5. In this 

case, the probability of identification of a pixel class erro­

neously is derived as 

p = p(Ho)p(1 < OIHo) + p(HI)p(1 > 0IHI) 

= 0.5 (p(1 < 0IHo) + P(I > OIHI)). 
(5) 

3. SIMULATION RESULTS 

In this section, we investigate the performance of the pro­

posed pixel-Ievel plant segmentation method. As mentioned 

above, we use PlantCV to extract the desired information 

of an image in the training phase. We randomly selected 

70 images from the LemnaTec platform with 2454 pixels x 

2056 pixels resolution and calculated the histogram of the 

features explained in previous section for HSV color space 

for plant/non-plant pixels. The accuracy of the LLR test for 

different cases are depicted in Fig. 4. Taking (5) into consid­

eration, the uncertainty/ambiguous region (I < 0 for Ho and 

I > 0 for Hd in pixel classification is shown in each figure. 
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Fig. 4: Uncertainty region in plant/non-plant classification in 

different cases. 

The uncertainty region when only information of channels S 
and V are used in the na'ive Bayes method is shown in Fig. 4 

(a). By adding information of channel H, the segmentation 

performance improves (uncertainty region decreases) as it is 

depicted in Fig. 4 (b). It is shown in Fig. (4) (c) that the 

uncertainty region is significantly reduced when information 

of H, S, and V, and also H2, S2, and V2 are considered in 

classification. 

The performance of the proposed method was also vali­

dated by segmenting two different LemnaTec cropped images 

shown in Fig. (5) (a) and Fig. (6) (a). The plant in Fig. 

(5) (a) has spare leaves and many small leaf tips, versus the 

plant area in Fig. (6) (a) is continuous and concentrated in 

one area. These two different images enable us to validate 

the performance of the proposed method in two different en­

vironments/scenarios. As are depicted in Fig. (5) (b) and Fig. 
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Fig. 5: Plant segmentation performance in different cases. 

(5) (c), the proposed method for pixel-level plant segmenta­

tion can detect/identify the plant area with high accuracy. The 

accuracy of the segmentation is improved when more statisti­

cal features are included in the segmentation procedure. It is 

also seen that the performance of the method is slightly better 

when the majority part of the plant area is in one part, i.e., 

Fig. (6) (b), and Fig. (6) (c). 

4. CONCLUSION 

A na'ive Bayes pixel-level plant segmentation method was 

proposed in this paper that can classify plant/non-plant pixels 

(regions) in an image. Statistical information/features were 

extracted from the image training dataset and their PDFs were 

modeled. By employing this information, the maximum like­

lihood ratio test was applied as a na'ive Bayes approach to 

identify the pixel class (plant/non-plant) in an image. Sim­

ulation results showed the uncertainty region in pixel classi­

fication decreased when more information/features were ex­

tracted from an image. By integrating this approach into the 

PlantCV platform, users will have the ability to train the naive 

Bayes classifier to identify plants in images from their exper­

imental system, thereby eliminating or reducing the need to 

manually parameterize image processing workflows. 
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